

Photocatalytic Coatings

Hydrophilic vs. Photocatalytic

Contact angle

Hydrophilic - Hydrophobic

Passive self-cleaning Coating

 SiO2 nanoparticles in a siloxane matrix with hydrophilic properties. Dry coating thickness 0.5 to 1 µm No organic surfactant groups => UV-stable, suitable for indoor and outdoor use Nanostructures in the 20 to 50 nm range offer self-cleaning properties

Structure like lotus leaf but super hydrophilic (not super hydrophobic) => "reverse lotus effect"

Undermining and flushing away inorganic/organic dirt and soil. Carrier material: metal, glass, plastic, paint or varnish

Super hydrophilic

Water

Active self-cleaning Coating

Photocatalytic (hydrophilic) coating

SEM-Picture

Photocatalytic Coating

SEM-Picture of a photocatalytic coating with Nano structuring

before a QUV-A test (accelerated weathering test with UVA irradiation)

after 500 hours of QUV-A testing

Source: Prof. Barthlott, University Bonn

• TiO 2 and SiO 2 nanoparticles in a siloxane matrix Distance between peaks in the range of 50 nm (nanostructure) the hydrophilic surface structure resembles the hydrophobic structure of the lotus leaf => inverse lotus effect Surface structure is weather-resistant in the QUV-A test

Photo catalytical Effect

Artificial Weathering

after 15 min UV irradiation

COATED

Technology

titanium dioxide nanoparticles. Source: Evonik (Degussa)

With sol-gel technology, nanoparticles can be surface-modified and stably dissolved in their primary particle form. (no re-agglomeration)

Methylene blue degradation measurement

Photocatalytic activity - measurement setup at Fraunhofer UMSICHT

- UV radiation (10 W/m²): 365 nm and 254 nm
- methylene blue (10 µmol/l)
- Samples: coated micro sieve and uncoated blank

Photo activity

Measurement by Fraunhofer UMSICHT

Test parameters 10 µmol/l, 50 ml 2x2 cm², average of 3 measurements

MS 18: 0,1326 %

Bactericidal Effect

Measurement by Fraunhofer UMSICHT

Bactericidal effect according to DIN 8199: evaluation after 72 hours

Antifouling-Effect

Measurement by Fraunhofer UMSICHT

Activated sludge degradation: 12 days of continuous UV irradiation

Micro sieve without coating

Micro sieve with titanium dioxide coating

Photocatalytic coating on nickel portafilter

Structure in the electron microscope

SEM recording from Fraunhofer UMSICHT

2010024997/3 stainless steel 5x5cm with VP PK 1442 (Ch. 20101006_Moe915) hardened at 150°C; 15min +1h 300°C

Measurement of methanol degradation

Measurement of physical life

Photocatalytic layer VP PK 1442 on glass shows clear - Methanol degradation with formation of CO2 (measurement by Sachtleben) Visible degradation of blue test dye by UV radiation from a commercially available facial tanner

Photo activity

Photo activity

Visible Effect

*"NE036" is a modification of VP PK 1442 with photoactive ones
TíO2 nano particles as used in
x-view PK 1214 and x-view PK 1215

Measurement of methanol degradation

Measurements by Fraunhofer ISC and Sachtleben

- Homogeneous distribution of the TiO2 nanoparticles in the VP PK 1442 coating and thus good accessibility of the titanium dioxide particles for organic dirt
- Significantly increased activity compared to commercially available self-cleaning glasses

Methylene blue degradation measurement

Measurements from the University of Hannover

Comparison of photocatalytic activity:

Efficiency / photon efficiency

Measurements from the University of Hannover

Contact Person

CERACOAT Industries Dr. Elio Keller

Buefelderstrasse 1 CH-8370 Simach

Telefon +41 76 788 18 38

E-Mail <u>info@ceracoat.me</u> dr.elio.keller@ceracoat.me